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A class of Finsler spaces is introduced which is determined by the metric function 
F(x, y) = [('r/~o + kB~Bo)y~yO]t/2, where B~ = Ba(x, y) and k is a constant. 
Various properties of these spaces are developed. A particular choice of B,~ is 
shown to produce a geodesic equation which is equivalent to the Lorentz equation 
of motion for a charged particle. Some general arguments for the physical 
applicability of Finsler spaces are also given. 

1. I N T R O D U C T I O N  

There is increasing interest in Finsler spaces as possible generalizations 
of  the traditional Riemannian approach to general relativity. A number  of  
recent papers (see, e.g., Asanov, 1977; Ikeda, 1985; Aringazin and Asanov, 
1985; Tavakol and Van den Bergh, 1986) have described particular examples 
of  Finsler spaces of  potential physical significantce. The reader unfamiliar 
with Finsler space should see the book by Asanov (1985), which is a valuable 
addition to the standard reference of Rund (1959). 

The application of Finsler spaces has been inhibited by some long- 
standing physical objections (Alder et al., 1975; and Asanov, 1985). These 
objections might be summarized as follows: 

(i) Light cones may not be unique and may not correspond to null 
geodesics. 

(ii) The norm of vectors may not be constant under transport  along 
certain paths. 

Corollaries of  (ii) are that timelike (or spacelike) vectors might not 
remain timelike (or spacelike) and that vectors orthogonal at one point in 
space might not be orthogonal after being transported to other points. 

Work of  the past few years, however, has pointed out that there are 
classes of  Finsler space which can overcome objections (i) and (ii). Asanov 
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(1985) discusses spaces of  the one-form or Berwald-Mo6r type, while 
Tavakol and Van den Bergh (1986) describe specific Berwald spaces with 
a conformal multiplying factor. 

There are also some comprehensive arguments which can be applied 
to counter (i) and (ii) for Finsler spaces in general. These arguments will 
be presented briefly in Section 4. For the time being it is assumed that 
Finsler spaces can indeed be applied to some physical problems. The proof  
of this will be that equations derived from Finsler analysis compare with 
equations that are known to be pertinent to those problems. 

In the present work a new class of Finsler space is discussed. A simple 
example of  one of these spaces was introduced in Beil (1987). 

In Section 2 the general form of this new class of spaces is given and 
some of its properties are derived. In particular, a general geodesic equation 
is developed. In Section 3 some special examples of these metrics are 
examined and one is selected for detailed computation. The Finsler geodesic 
equation for this metric is shown to be equivalent to the Lorentz equation 
for a charged particle in an electromagnetic field. 

2. GENERAL PROPERTIES OF THE SPACES 

The fundamentals of  Finsler space are now widely available, so many 
explanatory details will be omitted. 

The new class of  Finsler metric function is defined as 

F(x, y) = [(~7~t3 + kB~Bt3)Y~Yt3] ]/2 (1) 

The vector B~ = B~(x, y) and k is some constant. In general the vector 
y~ is tangent to the point x% Often y~ is identified as the velocity vector 
v ~ -- dx~/d~ " along a timelike path with parameter ~-. 

The signature of ~t3 is ( + 1 , - 1 , - 1 , - 1 ) .  A more general Riemannian 
metric g~t~(x) could, be inserted in place of ~t3. 

The function (1) can be compared with the well-known Randers form 

FR(X, y) = (g~y~y~)l/2 + k~y~ (2) 

There are some similarities between the two, especially that both forms 
can produce equations which look something like the equations of classical 
charged particles. However, there are also fundamental differences; for 
example, the spaces determined by (1) are not in general C-reducible 
(Asanov, 1985, p. 76). 

The standard homogeneity requirement for F 

F(x, Ay) = AF(x, y) (3) 

implies that B~' must be homogeneous of zero degree: 

B,,(x, Ay) = B,~(x, y) (4) 
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( O F / O y ~ ) y  ~ = F " (5) 

(O2F/Oy" Oyt3)y ~ = 0 

[ O( B~y~' ) / Oyt3 ]y t3 = Bay'* 

(6) 

(7) 

OB~/Oy ~ =OB ~ / Oy  ~ (13) 

is obvious and verifies the symmetry of  the metric. 
Several connections can be defined in Finsler space. The one of concern 

here is the Christoettel connection 

Y,~t3~ = �89 (Of~v/O xt3 ) + (Of~o/Ox ~ ) - (Of~,~/Ox~) ] (14) 

For the present spaces 

Y~t3~ = l k { [ O B ~ / O x ~ )  + (OBt3/Ox '~)1/~ + [ ( O B J O x  t3) - (OBO /Ox ~)1/~ 

+ [ ( o ~ / o x  ~) - ( o & / o x ~ ) ] ~  + [o(B,,y")/ox ~ ] o & / o y  o 

+ {O(B~y ~ ) / a x  e ] OB~/Oy '~ - { O ( B . y " ) / O x  ~ ] OBt3/Oy ~ 

+ B . Y " [ ( O 2 B ~ / O x  ~ OYt3)+(O2B./Ox t 3 0 y ~ ) - ( O 2 B ~ / O x "  0y~)]} (15) 

The relation 

[02(B~y~)/Oy ~' Oyt~]y ~ = 0 (8) 

Also, it is easy to show that 

(OB~/Oy ~)y~  = 0 (9) 

The metric tensor for this class of space is 

f,~t3 = � 8 9  '~ ay e)  = "q~t3 + kB~Bt3 + k(B~Y")(OBt~/OY ~) (10) 

The notation 

Bt3 = O( B~y ~ ) / Oy t3 (11 ) 

has been introduced. From (7), 

B~y~ = B~y ~ (12) 
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The equation of a Finslerian geodesic for a timelike path is (Asanov, 
1985) 

dv ~/ d ' c -  v~F -1 d F /  d r+  f~sy~o~v~vO = 0 (16) 

The vector y~ has now been identified with the velocity vL 
The contravariant metric tensor f v~ is defined by 

f v~f~ = 6~ (17) 

For the general metric (10), f~8 cannot be expressed in a closed form. 
However, there are many special cases with particular assumptions for B~ 
for which the contravariant metric can be given explicitly. 

A simple example is B~ = B~(x).  In this case B~ = B~ and 

f ~  = r/"~ - k(1 + kB2)- IB~B ~ (18) 

The notation B 2= B,~B ~= rl,~t3B'~B t3 is used. 
The geodesic equation becomes 

dv ~ / d r - [  c2 + k( B,~v'~)2]-l( B,,v")v ~ d ( Bt3vt3)/ dr  

+ k(1 + kB2)-~v'~B ~ dB,~/dr+ Bavt3f~H,~,,v '~ = 0 

( H ~  = OB~/Ox '~ - OB,~/Ox ~) (19) 

As shown in Beil (1987), the geodesic equation can be rewritten as 

d y e ~ d r +  k[c2+ k(B~v '~)2]- l[c2B ~ - (B,~v '~)v ~] d(Bt3vr dr 

+ k ( a r 1 6 2  ~ = 0 (20) 

If  a condition 

B~v ~ = e / m c k  (21) 

can be imposed, then the geodesic equation has the form of the Lorentz 
equation. Also, the field equations for this metric produce a relation between 
k and the gravitational constant. 

Of course, when B~ is not a function of v, then the space is no longer 
a Finsler space, but simply Riemannian. This Riemannian space could be 
considered a limiting case of this class of metrics. 

To conclude this section, a more useful form of the geodesic equation 
(16) will be developed. 

For the general metric (10), the intermediate results 

3, t3~v'~v t3 = k[ ~ .v  t~ a( B~,v'~)/ax t3 + Bt~vt312I,~.v '~ ] 
(22) 

=o&/ox -o ./ox 
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and 

d F / d r  = F-I ( �89  3 df~i3/dr+ f ~ v  ~ dye~d-r) 

= F-I(kB,~v'~v ~ dB~ /dv+  kB,~v~ dv~/d~ ") (23) 

are obtained. 
When (22) and (23) are substituted into (16), the result is 

d v ~ / d ~ -  kv~B~v~F-2(v ~ d~o/dr+ ~ dv/3/dr) 

+ k f ~ B , v  ~ dBr kB~v~fS'ITt~,v ~ = 0 (24) 

where the relations 

v ~ O(B~v~)/Ox ~ = v~v" OB~/Ox 13 = v ~ dB~/dr  

= a ( B j ) / d ~ . -  ~, dv'Vd.~ (25) 

have been used. 
The intent here is to remove the dependence on dva /dr  except in the 

leading term of (24). To this end, contract (24) with /~ and solve for 
B~ dye~dr: 

B8 dye~ d'c = [1 - k F - 2 (  Bo~v~ {[ k F - 2 (  Bo, v'~ ) 2 - k f ' ~  B,~B~ ]v ~ dB~/ d'r 

-kB,~v'~f~'BflYlt3,,v t3 } (26) 

Equation (26 is then substituted into (24) and gives 

dye~dr+ k[fa~B~ - c-2B~v~(1 - kfa~BgB~)v~]v ~ dBo/  dz 

+kBav x ( f~" + kc-2Bt3vt3f'~'Bov~)fl,~,v '~ = 0 (27) 

This version of  the geodesic equation is valid for any metric of  the class (10). 

3. E X A M P L E S  OF P A R T I C U L A R  S P A C E S  

Some of the simpler possible choices for Be are listed: 

B~ = ( s ~ v ' ) - '  vo 

B 2 = (SzVZ)-lA~v~S~ 

B 3 = (v~v')l/2(s~v")- 's~ 
(28) 

B~ = v,v~(sy)-2s~ 

B~ = (vzv~)-'/2v~ 

B~ = A~v~(s~v~)-%~ 

Here A s ( x )  and s~(x) are vectors to be specified. I f  v ~ is just the velocity 
vector, then v~v ~ = c 2 can be inserted. 
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The selection from the above, or the other possible choices for B~, will 
be determined by the physical system being modeled. It is only required 
that B~ be of  zero degree homogeneity. 

The metric for each of these B~ can be readily obtained from (10). For 
example, for B 1, 

f ~  = [1 + 2kv~v~ ( st3vt3)-2]rl~p - 4 k v ~ v  ~ ( s ~ v t 3 ) - 3 (  savt3 + s~v,~ ) 

+4kv~v~(s~v")-2 + 3k(v~v~)2(s~,v")-4s~s, (29) 

When the metric is computed for some of these B~ the space is found 
to actually be Riemannian. For example, 

f~p = ~l~p + kA,,at~ (30) 

which is equivalent to the limiting case B~ = B , ( x ) .  
B3~ also produces a Riemannian space since 

f3p = (1 + k)rl~t3 (31) 

Metrics can also be constructed by taking B~ to be a linear combination 
of  any of  the above choices. Interestingly, linear combinations such as 

B~ = B~ + aB~ (a a constant) (32) 

do not reduce to Riemannian spaces. This metric is 

f~t3 = [1 + k 0 / B e  o ~ ( t ) g t ) " ) - l / 2 ] ~ a t  3 -4- ~e ~e kB~Bt3 -- k0/Be V ~(V~VU)-3/2Vc~V~ 

B~ = A ,  + 0/( v~v")-~/2v, (33) 

A computational difficulty in working with these spaces is the determina- 
tion of the contravariant form of the metric. For a metric such as (29) this 
can be a tedious task. However, a general result has been obtained which 
can save considerable labor: For a general metric 

f,~p = 0/17h#3 + a2a~,at3 + 0/3( a,~bt3 + b,~at3 ) + 0/4b,~bt3 (34) 

The contravariant form is 

fP"  = fll rl t3" + f12 at3a" + fl3(aPb" + b~ a ") + f14 bt3b " (35) 

with 

~I = 0/11 

/32 = a l l ~ - l [ o t l O t 2  + (a20/4  -- a~)b.b ~] 
f13 = 0/11~--110/10/3 - -  (0/20/4--  0/2)a~b~] 

f14 = 0/7' ~r + (0/20/4- 0/~)a~a ~] 

~r = ( a 2 a 4 -  0/])[ ( a,b~) 2 -  ( a~a~)( b~,b" ) ] 

-0/110/1 + a2(ava ~) + 20/3(a~b v) + 0/4(b~b ~)] 

This satisfies (17) as required. 

(36) 
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A metric is now selected for detailed analysis in order to illustrate some 
possibilities of this class of Finsler space. The metric is the one given by 
(33), which is obtained from (32) or by taking 

Be~ = A~ + a (v~v~)l/2(s~v ~)-ls~ 

This is considered to be a special case of (34) with a~ = v~, b~ - B~ = 
A ,  + a(v~v~)-l/2v~. Then, 

--t e v 31 = l + k a c  B~v 

32 = -kt~c-3 B~ v~ 

33 = 0 (37) 

3,=  k 

M = - [3 !  + kB; ~ + k2~ 3] 

So, 

fl3~ = 311{ r1~ _ M-l[ kac-3 B~v,, (ill + kBzB" ) v~ v ~ 

- k : . c - ~ ( B ~ v ~ y ( v ~  ~ + ~ v  ~) - k~"~ ~]} (38) 

The superscript e will be omitted from B ~ for the rest of this section. 
The geodesic equation for this special case will be obtained using (27). 
A significant result is 

ft,~v = OA~/Ox '~ - OA~,/Ox ~ = F,~ (39) 

The vector A~ could be identified with the electromagnetic potential vector. 
Equation (39) demonstrates that a term in Be which is just A~ or B~ behaves 
just like the potential vector in the quation of motion. Further, terms in B~ 
which become purely velocity dependent i n / ~  (e.g., B 3 or B~) behave like 
electromagnetic gauge transformations when added to A~ terms. 

Other intermediate results for parts of the geodesic equation are 

f a ~  = _ ~ - l [ k o l c - 3 ( n v v v ) 2 v ~  + / ~ 8 ]  ( 4 0 )  

and 

fa~BsB. = -M-l[kac-3(B~v ~)3 +/~/~  ~] (41) 

Recall that the indices of v and /}  are raised and lowered by ~/~. 
When (38)-(41) are used in (27) the result can be shown to be 

dvS/dr+ kM-l(c-2A~v~v 8 - A S ) v  ~ dB~/dr 

+kfl-~lB, v~[rlS~-k~-l(c-2Avv~vS-AS)B~]F,,vv ~ =0 (42) 
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It is tentatively assumed that the factor k ~  -1 is small. This means that 
(42) is equivalent to the Lorentz equation if 

kB,,v~'3[ 1 = (1 + k a c - l A , , v  " + ka2) - l ( kA ,~v  '~ + kac )  = e~ mc (43) 

The relative size of terms is determined by o~ if k is of  "moderate"  size 
(i.e., 10-6<( k < 10 6 in cgs units), and A" not too large. Thus, 

a = m c 2 / e  ~ 10 6 (g cm/sec2) 1/2 (44) 

to a good approximation. The magnitude of ~r is then determined by the 
term k2oz 4, which must be greater than 1012. This confirms the assumption 
that k ~  -~ is small. 

Thus, a particular choice for B~ produces a geodesic equation of  some 
physical significance. Other choices to model other physcial situations are 
possible. 

4. DISCUSSION 

The first objection (i) to the physical application of  Finsler spaces is 
based on the fact that a general null geodesic condition 

f ~ , ( x ,  y ) y ~ y ~  = 0 (45) 

may have multiple solutions for y and that these solutions for y = dx  may 
not be light cones. 

However, as pointed out by Ishikawa (1981), there is an alternate 
definition of a null geodesic which is more reasonable from the standpoint 
of physical causality: 

fw3(x,  Y)  dx  '~ dx  ~ = 0 (46) 

Here the Finsler metric is defined in terms of a vector field y from some 
reference frame and y is not related to dx, the null cone coordinates. The 
light cone is always observed in a particular frame defined by y. This how 
all such measurements are done. 

In (46) y is treated like a parameter, so the solution for dx is unique 
and is the usual light cone as would be obtained in a Riemannian space 
from some g ,~r  ~ =0. The vector y may be identified with the 
frame velocity v. 

The second objection (ii) relates to the definition of the covariant 
derivative. There are two definitions commonly used in Finsler space, the 
8 derivative of  Rund and the Cartan derivative. These are usually indicated 
by the subscripts , and [, respectively. See Asanov (1985) for precise 
definitions. 



New Class of Finsler Metrics 667 

The Cartan derivative is specifically defined so that the length or norm 
of  vectors remains invariant under parallel transport (Rund, 1959). This is 
equivalent to 

f~t~l~ = 0 (47) 

which is the same as the metric property of the covariant derivative in 
Riemannian space. So the objection (ii) does not apply to the Cartan 
derivative. 

The Cartan derivative is applicable to spaces where x and y are 
independent variables. This is the type of  space considered in the present 
paper. However, it is also possible that the tangent vector y can be a function 
of  x. For these spaces, with y = y(x ) ,  the 6 derivative must be used, which 
no longer has the metric property. That is, 

f,~t3;~ = Y;~ of ,~/  OY ~ (48) 

for the derivative along the y direction. This is not as serious as it appears, 
however, since the differential o f f ~  does vanish along geodesics. The norms 
of  vectors then are invariant along geodesic paths. 

So (ii) does not apply to most cases of physical interest; indeed, it is 
only valid for nongeodesic paths where y = y(x) .  

In view of the above, Finsler spaces should be given more careful 
consideration as a generalization of the Riemannian approach to general 
relativity. As shown here, they can reproduce equations of physical interest, 
but from new points of view which might allow extensions of theory in new 
directions. 
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